We present a set of effective outflow/open boundary conditions and anassociated algorithm for simulating the dynamics of multiphase flows consistingof $N$ ($N\geqslant 2$) immiscible incompressible fluids in domains involvingoutflows or open boundaries. These boundary conditions are devised based on theproperties of energy stability and reduction consistency. The energy stabilityproperty ensures that the contributions of these boundary conditions to theenergy balance will not cause the total energy of the N-phase system toincrease over time. Therefore, these open/outflow boundary conditions are veryeffective in overcoming the backflow instability in multiphase systems. Thereduction consistency property ensures that if some fluid components are absentfrom the N-phase system then these N-phase boundary conditions will reduce tothose corresponding boundary conditions for the equivalent smaller system. Ournumerical algorithm for the proposed boundary conditions together with theN-phase governing equations involves only the solution of a set of de-coupledindividual Helmholtz-type equations within each time step, and the resultantlinear algebraic systems after discretization involve only constant andtime-independent coefficient matrices which can be pre-computed. Therefore, thealgorithm is computationally very efficient and attractive. We presentextensive numerical experiments for flow problems involving multiple fluidcomponents and inflow/outflow boundaries to test the proposed method. Inparticular, we compare in detail the simulation results of a three-phasecapillary wave problem with Prosperetti's exact physical solution anddemonstrate that the method developed herein produces physically accurateresults.
展开▼
机译:我们提出了一组有效的流出/开放边界条件,以及用于模拟多相流动力学的一组相关算法,这些动力学由包含流出或开放边界的域中的$ N $($ N \ geqslant 2 $)不互溶的不可压缩流体组成。这些边界条件是基于能量稳定性和还原一致性的属性设计的。能量稳定性能确保这些边界条件对能量平衡的贡献不会导致N相系统的总能量随时间增加。因此,这些开放/流出边界条件对于克服多相系统中的回流不稳定性非常有效。归纳一致性特性可确保如果N相系统中缺少某些流体成分,则这些N相边界条件将减小等效的较小系统的那些边界条件。提出的边界条件的数值算法与N相控制方程仅涉及每个时间步长内一组解耦的Helmholtz型方程的解,离散化后的线性代数系统仅涉及常数和时间独立的系数矩阵,可以预先计算。因此,该算法在计算上非常有效且具有吸引力。我们针对涉及多个流体成分和流入/流出边界的流动问题进行了广泛的数值实验,以测试所提出的方法。特别是,我们将三相毛细管波问题的仿真结果与Prosperetti的精确物理解决方案进行了详细比较,并证明本文开发的方法产生了物理上准确的结果。
展开▼